skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions

Journal Article · · Journal of Computational Physics
;  [1]
  1. Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, MS 50A-1148, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

We present a method for solving Poisson and heat equations with discontinuous coefficients in two- and three-dimensions. It uses a Cartesian cut-cell/embedded boundary method to represent the interface between materials, as described in Johansen and Colella (1998). Matching conditions across the interface are enforced using an approximation to fluxes at the boundary. Overall second order accuracy is achieved, as indicated by an array of tests using non-trivial interface geometries. Both the elliptic and heat solvers are shown to remain stable and efficient for material coefficient contrasts up to 10{sup 6}, thanks in part to the use of geometric multigrid. A test of accuracy when adaptive mesh refinement capabilities are utilized is also performed. An example problem relevant to nuclear reactor core simulation is presented, demonstrating the ability of the method to solve problems with realistic physical parameters.

OSTI ID:
21499787
Journal Information:
Journal of Computational Physics, Vol. 230, Issue 7; Other Information: DOI: 10.1016/j.jcp.2010.12.017; PII: S0021-9991(10)00681-9; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0021-9991
Country of Publication:
United States
Language:
English