skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 July 1995--30 September 1995

Technical Report ·
DOI:https://doi.org/10.2172/213919· OSTI ID:213919

The following accomplishments were made on task 4. Reproducibility of Catalyst Preparation: (1) Five slurry reactor tests were completed. Three tests were conducted using catalyst C (100 Fe/3 Cu/4 K/16 SiO{sub 2}) from three different batches (runs SB-2695, SB-2145 and SA-2715), and two tests were conducted with catalyst B (100 Fe/5 Cu/6 K/24 SiO{sub 2}) from two different preparation batches (runs SA-2615 and SB-2585). Performance of catalysts from different batches (activity, selectivity and deactivation rates) was similar to that of catalysts from the original batch (synthesized during DOE Contract DE- AC22-89PC89868). Thus, another major objective of the present contract, demonstration of reproducibility of catalyst preparation procedure and performance, has been accomplished. With these tests the work on Task 4 has been successfully completed. Two fixed bed reactor tests of catalysts B and C synthesized using potassium silicate solution as the source of potassium promoter were completed during this period (Task 5. The Effect of Source of Potassium and Basic Oxide Promoter). Activity of catalysts prepared using potassium silicate as the source of potassium promotion was somewhat higher, and their methane selectivities were higher than those of the corresponding catalysts prepared by incipient wetness impregnation using KHCO{sub 3} as the source of potassium promoter. However, these differences were not large, and may have been caused by experimental artifacts (e.g. existence of local hot spots in a reactor). A slurry reactor test (SA-2405) of catalyst with nominal composition 100 Fe/5 Cu/2 Ca/24 SiO{sub 2} was completed (Task 5). In general, the catalyst activity, space-time-yield, and hydrocarbon selectivities in this run during testing at:260{degrees}C, 2.17 MPa (300 psig), 2-2.6 Nl/g-cat/h and H{sub 2}CO=0.67 were quite good, and comparable to the best results obtained in our Laboratory.

Research Organization:
Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-94PC93069
OSTI ID:
213919
Report Number(s):
DOE/PC/93069-6; ON: DE96008831
Resource Relation:
Other Information: PBD: 20 Dec 1995
Country of Publication:
United States
Language:
English