skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped lead bismuth gallate oxide glasses

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.3256184· OSTI ID:21361916
; ; ;  [1];  [1]
  1. Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped lead bismuth gallate (PBG) oxide glasses were prepared and their spectroscopic properties were investigated. The derived Judd-Ofelt intensity parameters (OMEGA{sub 2}=6.81x10{sup -20} cm{sup 2}, OMEGA{sub 4}=2.31x10{sup -20} cm{sup 2}, and OMEGA{sub 6}=0.67x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment for Ho{sup 3+} sites in PBG glass compared with those in tellurite, fluoride (ZBLAN), and some other lead-contained glasses. Intense frequency upconversion emissions peaking at 547, 662, and 756 nm as well as infrared emissions at 1.20 and 2.05 mum in Ho{sup 3+}/Yb{sup 3+}-codoped PBG glass were observed, confirming that energy transfer between Yb{sup 3+} and Ho{sup 3+} takes place, and a two-phonon-assisted energy transfer from Yb{sup 3+} to Ho{sup 3+} ions was determined by the calculation using phonon sideband theory. The 1.20 mum emission observed was primarily due to the weak multiphonon deexcitation originated from the small phonon energy of PBG glass (approx535 cm{sup -1}). A large product of emission cross-section and measured lifetime (9.93x10{sup -25} cm{sup 2} s) was obtained for the 1.20 mum emission and the gain coefficient dependence on wavelength with population inversion rate (P) was performed. The peak emission cross-section for 2.05 mum emission was calculated to be 4.75x10{sup -21} cm{sup 2}. The relative mechanism of Ho{sup 3+}-doped and Ho{sup 3+}/Yb{sup 3+}-codoped PBG glasses on their spectroscopic properties was also discussed. Our results suggest that Ho{sup 3+}/Yb{sup 3+}-doped PBG glasses are a good potential candidate for the frequency upconversion devices and infrared amplifiers/lasers.

OSTI ID:
21361916
Journal Information:
Journal of Applied Physics, Vol. 106, Issue 10; Other Information: DOI: 10.1063/1.3256184; (c) 2009 American Institute of Physics; ISSN 0021-8979
Country of Publication:
United States
Language:
English