skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray Spectroscopy of K- and L-shell Z-pinch and Astrophysical Plasmas

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3241192· OSTI ID:21344615
; ;  [1];  [2]
  1. Plasma Physics Division, Naval Research Laboratory, Washington DC 20375 (United States)
  2. Berkeley Research Associates, Beltsville, Maryland 20705 (United States)

In recent years, there have been significant advances in instrumental capabilities for making X-ray spectroscopic measurements of astrophysical plasmas. There have been corresponding improvements in X-ray diagnostics for advanced multi-mega-ampere pulse power machines that produce increasingly large radiative yields from gas-puff and wire array Z pinch plasmas. Analysis used for Z pinches can be used to study ICF and also astrophysical plasmas where laboratory measurements and simulations are the only means to interpret observed data. The astrophysical data for Fe, the most cosmically abundant high Z element, can provide a wealth of information about cosmic plasmas. Fe is also the key element in stainless steel (SS) wire arrays that are investigated as an intense X-ray radiation source at the Z machine at Sandia National Laboratories. The implosion dynamics of an array of wires on the Z and/or refurbished Z accelerator produces an abundance of radiation from the K- and L-shell ionization stages. These dynamic plasmas are inherently non-LTE, with opacity and other factors influencing the X-ray output. As the plasma assembles on axis, a number of time resolved snapshots provide temperature and density profiles and map the emitting region. We will analyze the ionization dynamics and generate K- and L-shell spectra using the conditions generated in the Z and/or refurbished Z accelerator, described by a 1-D non-LTE radiation-hydrodynamics model. Diagnostics based on spectral shape of L-shell emissions are inherently more difficult than those based on K-shell emissions because of more complex multiplet structures and line overlaps. The non-LTE populations are obtained by using detailed atomic models that include all important excitation, ionization, and recombination processes. We will highlight the connection between laboratory Z-pinch plasma simulations and astrophysical plasmas.

OSTI ID:
21344615
Journal Information:
AIP Conference Proceedings, Vol. 1161, Issue 1; Conference: 16. international conference on atomic processes in plasmas, Monterey, CA (United States), 22-26 Mar 2009; Other Information: DOI: 10.1063/1.3241192; (c) 2009 American Institute of Physics; ISSN 0094-243X
Country of Publication:
United States
Language:
English