skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of different natural sorbents for removing CO{sub 2} from combustion gases, as studied in a bench-scale fluidized bed

Journal Article · · Energy and Fuels
DOI:https://doi.org/10.1021/ef800417v· OSTI ID:21125991

The reaction of CO{sub 2} with porous particles of CaO for chicken eggshells, mussel shells, and limestone. The reaction is a promising way of removing CO{sub 2}, e.g., from the exhaust of a power station, so that a pure stream of CO{sub 2} can subsequently be produced for sequestration by calcining (roasting) the solid CaCO{sub 3}. The reverse of the reaction regenerates the sorbent, which can thus be used cyclically. The reaction were investigated using a small electrically heated bed of sand at about 750{degree}C, fluidized by N{sub 2}. Typically, a sample (about 2 g) of cleaned calcareous material (sieved to about 600 {mu}m) was added to the hot bed, and the CO{sub 2} produced was measured, while the material was fully calcined. Next, enough CO{sub 2} was added to the fluidizing N{sub 2} to raise (CO{sub 2}) to above the value for equilibrium; thus, the CaO was carbonated. This forward step is shown to exhibit an apparent final conversion, the carrying capacity of the sorbent, below unity. This carrying capacity reduces after several cycles of calcination and carbonation, because blockage of pores denies access of CO{sub 2} to part of the CaO. After several such cycles, particles were removed from the reactor, either in their partially carbonated or fully calcined states, for studies using gas adsorption analysis, X-ray diffraction, and mercury porosimetry. Interestingly, it was found for all three sorbents that the carrying capacity of CaO for CO{sub 2} degraded at a similar rate. The carrying capacity was roughly proportional to the volume of pores narrower than about 100 nm, as measured by Barrett-Joyner-Halenda (BJH) gas adsorption analysis. Evidently, these narrow pores contain both the surface area for CO{sub 2} to absorb and the empty volume to accommodate the product, CaCO{sub 3}. The resistance of eggshells to attrition was broadly comparable to that of Purbeck (U.K.) limestone. 24 refs., 8 figs., 2 tabs.

OSTI ID:
21125991
Journal Information:
Energy and Fuels, Vol. 22, Issue 6; Other Information: p.fennell@imperial.ac.uk; ISSN 0887-0624
Country of Publication:
United States
Language:
English