skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Light-induced metal-insulator transition in n-GaAs/AlGaAs heterostructure: Acoustic methods of study

Journal Article · · Semiconductors
;  [1];  [2]
  1. Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)
  2. Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Division (Russian Federation)

An n-GaAs/AlCaAs heterostructure 'underdoped' with Si, with the dark conductance of the 2D channel at T = 4.2 K lower than 10{sup -8} {omega}{sup -1}, is studied. By successive illumination with a LED, the conductance of the structure could be raised by five orders of magnitude, up to {approx}10{sup -3} {omega}{sup -1}, which allowed studies of the metal-insulator transition (MIT) in the same sample at the same temperature. A new method of MIT studies using acoustoelectric effects is proposed. These effects have been measured at T = 4.2 K under successive illumination of the sample without a magnetic field and in a field up to 6 T. The real, {sigma}{sub 1}, and imaginary, {sigma}{sub 2}, parts of the high-frequency (HF) conductance {sigma}{sup hf} = {sigma}{sub 1} - i{sigma}{sub 2} and their ratio {sigma}{sub 1}/{sigma}{sub 2} was determined. The percolation mechanism of MIT has been established. It is found that, up to {sigma}{sub 1} {approx} 10{sup -7} {omega}{sup -1}, the system is in the insulating state, and electrons are localized at the minima of the random potential. In this situation, the HF hopping conductivity mechanism dominates and is characterized by the relation {sigma}{sub 2} {>=} {sigma}{sub 1}. As the electron concentration increases, electron droplets become larger, and HF conductivity arises within these droplets. The conduction mechanism becomes mixed: the conduction by delocalized electrons within metallic droplets appears in parallel with hopping. As the conductance further increases, above 10{sup -5} {omega}{sup -1}, metallic droplets fill the entire conducting surface, and a metallic state with {sigma}{sub 2} = 0 appears. A curve demonstrating the dependence of the relative part of the surface area occupied by metallic droplets on the conductance of the 2D channel is plotted.

OSTI ID:
21088626
Journal Information:
Semiconductors, Vol. 40, Issue 12; Other Information: DOI: 10.1134/S1063782606120086; Copyright (c) 2006 Nauka/Interperiodica; Article Copyright (c) 2006 Pleiades Publishing, Inc; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English

Similar Records

Time domain spectroscopy of the magnetic field induced metal-insulator transition in n:InSb
Conference · Thu Jan 01 00:00:00 EST 2004 · OSTI ID:21088626

Experimental study of two-dimensional quantum Wigner solid in zero magnetic field
Journal Article · Mon Mar 31 00:00:00 EDT 2014 · AIP Conference Proceedings · OSTI ID:21088626

Metal-insulator transitions in IZO, IGZO, and ITZO films
Journal Article · Tue Oct 21 00:00:00 EDT 2014 · Journal of Applied Physics · OSTI ID:21088626