skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

We present a method to integrate the equations of motion that govern bound, accelerated orbits in Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition between osculating orbits corresponds to an evolution of the elements. In this paper we derive the evolution equations for a convenient set of orbital elements, assuming that the force acts only within the orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the force must be small. As an application of our method, we analyze the relative motion of two massive bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild spacetime with a mass parameter equal to the system's total mass. The force then consists of terms that depend on the system's reduced mass. We highlight the importance of conservative terms in this force, which cause significant long-term changes in the time dependence and phase of the relative orbit. From our results we infer some general limitations of the radiative approximation to the gravitational self-force, which uses only the dissipative terms in the force.

OSTI ID:
21039133
Journal Information:
Physical Review. D, Particles Fields, Vol. 77, Issue 4; Other Information: DOI: 10.1103/PhysRevD.77.044013; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

Self-force calculations with matched expansions and quasinormal mode sums
Journal Article · Mon Jun 15 00:00:00 EDT 2009 · Physical Review. D, Particles Fields · OSTI ID:21039133

Self-force via m-mode regularization and 2+1D evolution: Foundations and a scalar-field implementation on Schwarzschild spacetime
Journal Article · Sat Jan 15 00:00:00 EST 2011 · Physical Review. D, Particles Fields · OSTI ID:21039133

Two approaches for the gravitational self-force in black hole spacetime: Comparison of numerical results
Journal Article · Mon Dec 15 00:00:00 EST 2008 · Physical Review. D, Particles Fields · OSTI ID:21039133