skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Failure Pressure Estimates of Steam Generator Tubes Containing Wear-type Defects

Conference ·
OSTI ID:20995433
; ; ;  [1]; ;  [2]
  1. School of Mechanical Engineering, Sungkyunkwan University (Korea, Republic of)
  2. Korea Atomic Energy Research Institute (Korea, Republic of)

It is commonly requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. The critical defect dimensions have been determined based on the concept of plastic instability. This criterion, however, is known to be too conservative for some locations and types of defects. In this context, the accurate failure estimation for steam generator tubes with a defect draws increasing attention. Although several guidelines have been developed and are used for assessing the integrity of defected tubes, most of these guidelines are related to stress corrosion cracking or wall-thinning phenomena. As some of steam generator tubes are also failed due to fretting and so on, alternative failure estimation schemes for relevant defects are required. In this paper, three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of steam generator tubes with different defect configurations; elliptical wastage type, wear scar type and rectangular wastage type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of the steam generator tube. After investigating the effect of key parameters such as wastage depth, wastage length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wastage region. Comparison of failure pressures predicted according to the proposed estimation scheme with some corresponding burst test data shows good agreement, which provides a confidence in the use of the proposed equations to assess the integrity of steam generator tubes with wear-type defects. (authors)

Research Organization:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI ID:
20995433
Resource Relation:
Conference: 14. international conference on nuclear engineering (ICONE 14), Miami, FL (United States), 17-20 Jul 2006; Other Information: Country of input: France
Country of Publication:
United States
Language:
English