skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast Monte Carlo based joint iterative reconstruction for simultaneous {sup 99m}Tc/{sup 123}I SPECT imaging

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.2756601· OSTI ID:20953502
; ;  [1]
  1. Department of Radiology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115 (United States)

Simultaneous {sup 99m}Tc/{sup 123}I SPECT allows the assessment of two physiological functions under identical conditions. The separation of these radionuclides is difficult, however, because their energies are close. Most energy-window-based scatter correction methods do not fully model either physical factors or patient-specific activity and attenuation distributions. We have developed a fast Monte Carlo (MC) simulation-based multiple-radionuclide and multiple-energy joint ordered-subset expectation-maximization (JOSEM) iterative reconstruction algorithm, MC-JOSEM. MC-JOSEM simultaneously corrects for scatter and cross talk as well as detector response within the reconstruction algorithm. We evaluated MC-JOSEM for simultaneous brain profusion ({sup 99m}Tc-HMPAO) and neurotransmission ({sup 123}I-altropane) SPECT. MC simulations of {sup 99m}Tc and {sup 123}I studies were generated separately and then combined to mimic simultaneous {sup 99m}Tc/{sup 123}I SPECT. All the details of photon transport through the brain, the collimator, and detector, including Compton and coherent scatter, septal penetration, and backscatter from components behind the crystal, were modeled. We reconstructed images from simultaneous dual-radionuclide projections in three ways. First, we reconstructed the photopeak-energy-window projections (with an asymmetric energy window for {sup 123}I) using the standard ordered-subsets expectation-maximization algorithm (NSC-OSEM). Second, we used standard OSEM to reconstruct {sup 99m}Tc photopeak-energy-window projections, while including an estimate of scatter from a Compton-scatter energy window (SC-OSEM). Third, we jointly reconstructed both {sup 99m}Tc and {sup 123}I images using projection data associated with two photopeak energy windows and an intermediate-energy window using MC-JOSEM. For 15 iterations of reconstruction, the bias and standard deviation of {sup 99m}Tc activity estimates in several brain structures were calculated for NSC-OSEM, SC-OSEM, and MC-JOSEM, using images reconstructed from primary (unscattered) photons as a reference. Similar calculations were performed for {sup 123}I images for NSC-OSEM and MC-JOSEM. For {sup 123}I images, dopamine binding potential (BP) at equilibrium and its signal-to-noise ratio (SNR) were also calculated. Our results demonstrate that MC-JOSEM performs better than NSC- and SC-OSEM for quantitation tasks. After 15 iterations of reconstruction, the relative bias of {sup 99m}Tc activity estimates in the thalamus, striata, white matter, and gray matter volumes from MC-JOSEM ranged from -2.4% to 1.2%, while the same estimates for NSC-OSEM (SC-OSEM) ranged from 20.8% to 103.6% (7.2% to 41.9%). Similarly, the relative bias of {sup 123}I activity estimates from 15 iterations of MC-JOSEM in the striata and background ranged from -1.4% to 2.9%, while the same estimates for NSC-OSEM ranged from 1.6% to 10.0%. The relative standard deviation of {sup 99m}Tc activity estimates from MC-JOSEM ranged from 1.1% to 4.8% versus 1.2% to 6.7% (1.2% to 5.9%) for NSC-OSEM (SC-OSEM). The relative standard deviation of {sup 123}I activity estimates using MC-JOSEM ranged from 1.1% to 1.9% versus 1.5% to 2.7% for NSC-OSEM. Using the {sup 123}I dopamine BP obtained from the reconstruction produced by primary photons as a reference, the result for MC-JOSEM was 50.5% closer to the reference than that of NSC-OSEM after 15 iterations. The SNR for dopamine BP was 23.6 for MC-JOSEM as compared to 18.3 for NSC-OSEM.

OSTI ID:
20953502
Journal Information:
Medical Physics, Vol. 34, Issue 8; Other Information: DOI: 10.1118/1.2756601; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English