skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [1];  [1];  [1];  [1]
  1. Radiation Oncology, University of California-San Francisco, San Francisco, CA (United States)

Purpose: The aim of this study was to quantify gains in lymph node coverage and critical structure dose reduction for whole-pelvis (WP) and extended-field (EF) radiotherapy in prostate cancer using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3DCRT) for the first treatment phase of 45 Gy in the concurrent treatment of lymph nodes and prostate. Methods and Materials: From January to August 2005, 35 patients with localized prostate cancer were treated with pelvic IMRT; 7 had nodes defined up to L5-S1 (Group 1), and 28 had nodes defined above L5-S1 (Group 2). Each patient had 2 plans retrospectively generated: 1 WP 3DCRT plan using bony landmarks, and 1 EF 3DCRT plan to cover the vascular defined volumes. Dose-volume histograms for the lymph nodes, rectum, bladder, small bowel, and penile bulb were compared by group. Results: For Group 1, WP 3DCRT missed 25% of pelvic nodes with the prescribed dose 45 Gy and missed 18% with the 95% prescribed dose 42.75 Gy, whereas WP IMRT achieved V{sub 45Gy} = 98% and V{sub 42.75Gy} = 100%. Compared with WP 3DCRT, IMRT reduced bladder V{sub 45Gy} by 78%, rectum V{sub 45Gy} by 48%, and small bowel V{sub 45Gy} by 232 cm{sup 3}. EF 3DCRT achieved 95% coverage of nodes for all patients at high cost to critical structures. For Group 2, IMRT decreased bladder V{sub 45Gy} by 90%, rectum V{sub 45Gy} by 54% and small bowel V{sub 45Gy} by 455 cm{sup 3} compared with EF 3DCRT. Conclusion: In this study WP 3DCRT missed a significant percentage of pelvic nodes. Although EF 3DCRT achieved 95% pelvic nodal coverage, it increased critical structure doses. IMRT improved pelvic nodal coverage while decreasing dose to bladder, rectum, small bowel, and penile bulb. For patients with extended node involvement, IMRT especially decreases small bowel dose.

OSTI ID:
20850146
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 66, Issue 3; Conference: 48. annual meeting of the American Society for Therapeutic Radiology and Oncology, Pennsylvania, PA (United States), 5-9 Nov 2006; Other Information: DOI: 10.1016/j.ijrobp.2006.05.037; PII: S0360-3016(06)00953-9; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English

Similar Records

Helical Tomotherapy vs. Intensity-Modulated Proton Therapy for Whole Pelvis Irradiation in High-Risk Prostate Cancer Patients: Dosimetric, Normal Tissue Complication Probability, and Generalized Equivalent Uniform Dose Analysis
Journal Article · Mon Aug 01 00:00:00 EDT 2011 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:20850146

Dosimetric Study of Pelvic Proton Radiotherapy for High-Risk Prostate Cancer
Journal Article · Sun Nov 15 00:00:00 EST 2009 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:20850146

Feasibility of dose escalation using intensity-modulated radiotherapy in posthysterectomy cervical carcinoma
Journal Article · Tue Mar 15 00:00:00 EST 2005 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:20850146