skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: InGaAs quantum wells on wafer-bonded InP/GaAs substrates

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.2130889· OSTI ID:20719660
; ; ; ; ;  [1]
  1. Department of Materials Science and Engineering, University of California, Los Angeles, California 90095 (United States)

Wafer bonding and hydrogen implantation exfoliation techniques have been used to fabricate a thin InP template layer on GaAs with intermediate silicon nitride bonding layers. This template layer was used to directly compare subsequent metal organic vapor phase epitaxial growth of InGaAs/InAlAs quantum-well structures on these wafer-bonded templates to growth on a standard InP substrate. Chemical mechanical polishing of the bonded structure and companion InP substrates was assessed. No effects from the coefficient of thermal mismatch are detected up to the growth temperature, and compositionally equivalent structures are grown on the wafer-bonded InP template and the bare InP substrate. However, after growth dislocation, loops can be identified in the InP template layer due to the ion implantation step. These defects incur a slight mosaic tilt but do not yield any crystalline defects in the epitaxial structure. Low-temperature photoluminescence measurements of the InGaAs grown on the template structure and the InP substrate exhibit near-band-edge luminescence on the same order; this indicates that ion implantation and exfoliation is a viable technique for the integration of III-V materials.

OSTI ID:
20719660
Journal Information:
Journal of Applied Physics, Vol. 98, Issue 9; Other Information: DOI: 10.1063/1.2130889; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English