skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spacetime structure of static solutions in Gauss-Bonnet gravity: Charged case

Journal Article · · Physical Review. D, Particles Fields
 [1];  [2]
  1. Graduate School of Science, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)
  2. Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

We have studied spacetime structures of static solutions in the n-dimensional Einstein-Gauss-Bonnet-Maxwell-{lambda} system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient {alpha} is non-negative and 4{alpha}-tilde/l{sup 2}{<=}1 in order to define the relevant vacuum state. Solutions have the (n-2)-dimensional Euclidean submanifold whose curvature is k=1, 0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of a spacetime. A branch singularity appears at the finite radius r=r{sub b}>0 for any mass parameter. There the Kretschmann invariant behaves as O((r-r{sub b}){sup -3}), which is much milder than the divergent behavior of the central singularity in general relativity O(r{sup -4(n-2)}). In the k=1 and 0 cases plus-branch solutions have no horizon. In the k=-1 case, the radius of a horizon is restricted as r{sub h}<{radical}(2{alpha}-tilde) (r{sub h}>{radical}(2{alpha}-tilde) in the plus (minus) branch. Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. There are topological black hole solutions with zero and negative mass in the plus branch regardless of the sign of the cosmological constant. Although there is a maximum mass for black hole solutions in the plus branch for k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=-1 and n{>=}6 have an inner black hole and inner and outer black hole horizons. In the 4{alpha}-tilde/l{sup 2}=1 case, only a positive mass solution is allowed, otherwise the metric function takes a complex value. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.

OSTI ID:
20713540
Journal Information:
Physical Review. D, Particles Fields, Vol. 72, Issue 6; Other Information: DOI: 10.1103/PhysRevD.72.064007; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case
Journal Article · Wed Jun 15 00:00:00 EDT 2005 · Physical Review. D, Particles Fields · OSTI ID:20713540

Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant
Journal Article · Wed Sep 15 00:00:00 EDT 2004 · Physical Review. D, Particles Fields · OSTI ID:20713540

Taub-NUT/bolt black holes in Gauss-Bonnet-Maxwell gravity
Journal Article · Sat Apr 15 00:00:00 EDT 2006 · Physical Review. D, Particles Fields · OSTI ID:20713540