skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fourier-transform method of data compression and temporal fringe pattern analysis

Journal Article · · Applied Optics
DOI:https://doi.org/10.1364/AO.44.007043· OSTI ID:20702665

Temporal fringe pattern analysis is invaluable in studies of transient phenomena but necessitates large data storage for two essential sets of data, i.e., fringe pattern intensity and deformation phase. We describe a compression scheme based on the Fourier-transform method for temporal fringe data storage that permits retrieval of both the intensity and the deformation phase. When the scheme was used with simulated temporal wavefront interferometry intensity fringe patterns, a high compression ratio of 10.77 was achieved, with a significant useful data ratio of 0.859. The average root-mean-square error in phase value restored was a low 0.0015 rad. With simulated temporal speckle interferometry intensity fringe patterns, the important paremeters varied with the modulation cutoff value applied. For a zero modulation cutoff value, the ratio of data points and the compression ratio values obtained were roughly the same as in wavelength interferometry, albeit the average root-mean-square error in the phase value restored was far higher. By increasing the modulation cutoff value we attained significant reduction and increase in the ratio of data points and the compression ratio, respectively, whereas the average root-mean-square error in the restored phase values was reduced only slightly.

OSTI ID:
20702665
Journal Information:
Applied Optics, Vol. 44, Issue 33; Other Information: DOI: 10.1364/AO.44.007043; (c) 2005 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6935
Country of Publication:
United States
Language:
English