skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LDA and GGA calculations of alkali metal adsorption at the (001) surface of MgO

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.480875· OSTI ID:20215291
 [1];  [1];  [2];  [1];  [1]
  1. Materials Resources, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)
  2. Materials Resources, Pacific Northwest National Laboratory, Richland, Washington 99352, (United States)

The adsorption geometry, binding energy and electronic structure of alkali metal overlayers on the MgO (001) surface have been studied by means of density functional theory, using Gaussian-type orbitals to expand the wave functions and electronic charge density. A two-dimensionally periodic slab of MgO with alkali metal adsorbed at one surface was used to model the semi-infinite system. Li, Na, and K were considered at both half- and quarter-monolayer coverage. Results were compared for the local density approximation and for two different forms of the generalized gradient approximation. In all cases Li was found to interact with the surface approximately twice as strongly as Na and three times as strongly as K. The epitaxial binding energies were, however, always less than or close to the bulk cohesive energies of the respective alkali metals, suggesting an instability of the adsorbed film toward the formation of two- or three-dimensional islands, in agreement with experiment. Spin polarized and unpolarized calculations were compared to detect metal-insulator transitions in the alkali overlayer. Only Li adsorbed at 1:4 coverage was found to have lower energy in a spin polarized (hence nonmetallic) state. (c) 2000 American Institute of Physics.

OSTI ID:
20215291
Journal Information:
Journal of Chemical Physics, Vol. 112, Issue 6; Other Information: PBD: 8 Feb 2000; ISSN 0021-9606
Country of Publication:
United States
Language:
English

Similar Records

Periodic density functional LDA and GGA study of CO adsorption at the (001) surface of MgO
Journal Article · Thu May 18 00:00:00 EDT 2000 · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical · OSTI ID:20215291

Gaussian-basis LDA and GGA calculations for alkali-metal equations of state
Journal Article · Fri May 01 00:00:00 EDT 1998 · Physical Review, B: Condensed Matter · OSTI ID:20215291

{ital Ab initio} and semiempirical studies of the adsorption and dissociation of water on pure, defective, and doped MgO (001) surfaces
Journal Article · Tue Sep 01 00:00:00 EDT 1998 · Journal of Chemical Physics · OSTI ID:20215291