skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal

Conference ·
OSTI ID:20012921

This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continuous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a vertical furnace. The gas flow was laminar, the gas temperature was 1,000 C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3--9 mm, tire crumb was size-classified to be 180--212 {micro}m and the high volatile bituminous coal, used herein, was 63--75{micro}m. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x}, polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

Research Organization:
Northeastern Univ., Boston, MA (US)
Sponsoring Organization:
Environmental Protection Agency
OSTI ID:
20012921
Resource Relation:
Conference: 23rd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL (US), 03/09/1998--03/13/1998; Other Information: PBD: [1998]; Related Information: In: The proceedings of the 23rd international technical conference on coal utilization and fuel systems, by Sakkestad, B.A. [ed.], 1164 pages.
Country of Publication:
United States
Language:
English