skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 2: In vitro gene expression assays

Journal Article · · Environmental Science and Technology
DOI:https://doi.org/10.1021/es990449w· OSTI ID:20006148

Extracts of sediment collected from Masan Bay, Korea were fractionated using Florisil columns, Fractions were screened for their ability to induce estrogen- and dioxini-like gene expression in vitro using NVLN and H2IIE-luc cells, respectively, both before and after acid treatment. Florisil fraction 1 (F1), which was shown to contain polychlorinated biphenyls, induced very little response in either assay. The midpolarity Florisil fraction (F2) was the most active fraction. Twenty-seven of 28 F2 samples induced significant estrogenic activity, and all 28 samples induced significant dioxin-like activity. Twelve of the F2 samples produced magnitudes of response in the dioxin-responsive H2IIIE-luc cells similar to those induced by a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) standard, Acid treatment did not markedly diminish the activity of F2 samples. These results suggested the presence of unidentified, acid stable, aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) agonists in F2. Twenty-three of the 28 most polar florisil fractions (F3) were either cytotoxic or caused morphological changes in estrogen-responsive NVLN cells, while over half of the F3 samples caused similar effects in H2IIE-luc cells. Empirical evidence suggested that acid labile compounds contributed to both the estrogenic and cytotoxic responses of the NVLN cells. Mass balance suggested that known concentrations of alkylphenols and bisphenol A may account for a portion of the estrogenic response but were not great enough to account for the toxicity. Acid labile compounds also contributed substantially to the dioxin-like activity of F3 samples. This adds to a growing body of evidence which suggests the presence of unidentified, relatively polar, aryl hydrocarbon receptor agonists in sediment from some areas.

Research Organization:
Seoul National Univ. (KR)
OSTI ID:
20006148
Journal Information:
Environmental Science and Technology, Vol. 33, Issue 23; Other Information: PBD: 1 Dec 1999; ISSN 0013-936X
Country of Publication:
United States
Language:
English