skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growing Pacific Linkage with Western North Atlantic Explosive Cyclogenesis

Journal Article · · Journal of Climate
 [1];  [2];  [2];  [3];  [4];  [5]
  1. a Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, b Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
  2. a Department of Plants, Soils, and Climate, Utah State University, Logan, Utah
  3. a Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, c Utah Climate Center, Utah State University, Logan, Utah
  4. d Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan
  5. e College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China

Abstract Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.

Sponsoring Organization:
USDOE
OSTI ID:
2000145
Journal Information:
Journal of Climate, Journal Name: Journal of Climate Vol. 36 Journal Issue: 20; ISSN 0894-8755
Publisher:
American Meteorological SocietyCopyright Statement
Country of Publication:
United States
Language:
English

Similar Records

A new climatology of South American extratropical cyclogenesis with an intercomparison among ERA5 , JRA55 and the Brazilian Navy
Journal Article · Tue Sep 12 00:00:00 EDT 2023 · International Journal of Climatology · OSTI ID:2000145

Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario
Journal Article · Tue Jul 01 00:00:00 EDT 1997 · Journal of Climate · OSTI ID:2000145

Remotely forced intraseasonal oscillations over the tropical Atlantic
Journal Article · Fri Jan 01 00:00:00 EST 1993 · Journal of the Atmospheric Sciences; (United States) · OSTI ID:2000145

Related Subjects