skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

Conference ·
OSTI ID:20000155

In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

Research Organization:
Sakarya University, Adapazar (TR)
OSTI ID:
20000155
Resource Relation:
Conference: 33rd Intersociety Energy Conversion Engineering Conference, Colorado Springs, CO (US), 08/02/1998--08/06/1998; Other Information: 1 CD-ROM. Operating system required: Windows 3.x; Windows 95/NT; Macintosh; UNIX. All systems need 2X CD-ROM drive., PBD: 1998; Related Information: In: Proceedings of the 33. intersociety energy conversion engineering conference, by Anghaie, S. [ed.], [2800] pages.
Country of Publication:
United States
Language:
English