skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste

Journal Article · · Journal of Industrial Microbiology and Biotechnology
DOI:https://doi.org/10.1093/jimb/kuad008· OSTI ID:1970391

Abstract Waste plastic presently accumulates in landfills or the environment. While natural microbial metabolisms can degrade plastic polymers, biodegradation of plastic is very slow. This study demonstrates that chemical deconstruction of polyethylene terephthalate (PET) with ammonium hydroxide can replace the rate limiting step (depolymerization) and by producing plastic-derived terephthalic acid and terephthalic acid monoamide. The deconstructed PET (DCPET) is neutralized with phosphoric acid prior to bioprocessing, resulting in a product containing biologically accessible nitrogen and phosphorus from the process reactants. Three microbial consortia obtained from compost and sediment degraded DCPET in ultrapure water and scavenged river water without addition of nutrients. No statistically significant difference was observed in growth rate compared to communities grown on DCPET in minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight this, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that microbial communities may enable flexible bioprocessing of mixed plastic wastes when coupled with chemical deconstruction.

Sponsoring Organization:
USDOE
OSTI ID:
1970391
Journal Information:
Journal of Industrial Microbiology and Biotechnology, Journal Name: Journal of Industrial Microbiology and Biotechnology Vol. 50 Journal Issue: 1; ISSN 1367-5435
Publisher:
Oxford University PressCopyright Statement
Country of Publication:
Germany
Language:
English

Related Subjects