skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of rotor-stator interaction on turbine blade film cooling

Journal Article · · Journal of Turbomachinery
DOI:https://doi.org/10.1115/1.2836593· OSTI ID:194250
 [1]
  1. Ohio State Univ., Columbus, OH (United States)

The goal of this study is to quantify the impact of rotor-stator interaction on surface heat transfer of film cooled turbine blades. In Section 1, a steady-state injection model of the film cooling is incorporated into a two-dimensional, thin shear layer, multiblade row CFD code. This injection model accounts for the penetration and spreading of the coolant jet, as well as the entrainment of the boundary layer fluid by the coolant. The code is validated, in the steady state, by comparing its predictions to data from a blade tested in linear cascade. In Section 2, time-resolved film cooled turbine rotor heat transfer measurements are compared with numerical predictions. Data were taken on a fully film cooled blade in a transonic, high pressure ratio, single-stage turbine in a short duration turbine test facility, which simulates full-engine non-dimensional conditions. Film cooled heat flux on the pressure surface is predicted to be as much as a factor of two higher in the time average of the unsteady calculations compared to the steady-state case. Time-resolved film cooled heat transfer comparison of data to prediction at two spanwise positions is used to validate the numerical code. The unsteady stator-rotor interaction results in the pulsation of the coolant injection flow out of the film holes with large-scale fluctuations. The combination of pulsating coolant flow and the interaction of the coolant with this unsteady external flow is shown to lower the local pressure side adiabatic film effectiveness by as much as 64% when compared to the steady-state case.

Sponsoring Organization:
USDOE
OSTI ID:
194250
Journal Information:
Journal of Turbomachinery, Vol. 118, Issue 1; Other Information: PBD: Jan 1996
Country of Publication:
United States
Language:
English

Similar Records

Predictions of three-dimensional steady and unsteady inviscid transonic stator/rotor interaction with inlet radial temperature nonuniformity
Journal Article · Fri Jul 01 00:00:00 EDT 1994 · Journal of Turbomachinery; (United States) · OSTI ID:194250

Unsteady heat transfer in stator-rotor interaction by two-equation turbulence model
Journal Article · Thu Jul 01 00:00:00 EDT 1999 · Journal of Turbomachinery · OSTI ID:194250

Analysis of hot streak effects on turbine rotor heat load
Journal Article · Tue Jul 01 00:00:00 EDT 1997 · Journal of Turbomachinery · OSTI ID:194250