skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Treatability studies and large-scale treatment of aqueous mixed waste containing heavy metals

Conference ·
OSTI ID:193912

Wastes have accumulated at the Idaho National Engineering Laboratory through routine laboratory practices, experimental engineering operations, and decommissioning and decontamination of nuclear reactor facilities. A storage tank at the Test Area North held approximately 129,000 L of acidic wastewater and contained prohibited levels of lead and mercury. Radioactive constituents were also present; the most predominant being radiocesium Cs-137 and radiocobalt Co-60. Bench-scale studio were undertaken to evaluate ion exchange as a means of removing the contaminants. A set of breakthrough curves was obtained and identified capacity constraints, selectivities, and operating requirements of candidate resins. Treatment studies indicated that Purolite S-920 resin could effectively remove mercury, while Rohm and Haas` Amberlite 200-CH was used for lead and radionuclide removal. Based on these laboratory tests a full-scale facility, using multiple ion exchange columns, was designed and operated in the spring of 1994. The liquid effluents were discharged to an onsite evaporation pond and met RCRA disposal limits for hazardous metals and self-imposed radionuclide limits. All secondary wastes and residues were sampled and subjected to the to)dc characteristic leaching procedure. The resulting leachate concentrations were below RCRA discharge limits and, therefore, these will be disposed of at the onsite low-level disposal facility. After concluding the tank wastewater operations, enough reserve resin capacity was available to treat three additional mixed wastes residing onsite. These totaled about 1,900 L (500 gal) and contained prohibited levels of chromium, cadmium, and barium. Laboratory studies demonstrated that these heavy metals could also be removed by the existing resins. Treatment was performed at the full-scale facility with the effluents discharged to the evaporation pond.

Research Organization:
Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC07-94ID13223
OSTI ID:
193912
Report Number(s):
INEL-94/00066; CONF-9508198-1; ON: DE96003512; TRN: 96:005529
Resource Relation:
Conference: Mixed waste symposium, Baltimore, MD (United States), 7-11 Aug 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English