skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prediction of DIII-D Pedestal Structure from Externally Controllable Parameters

Dataset ·
DOI:https://doi.org/10.7910/DVN/SA4E4W· OSTI ID:1887964

The sharp increase of pressure at the edge of a high confinement mode (H-mode) plasma, the pedestal, strongly impacts overall plasma performance. Predicting the pedestal is a necessity to control and optimize tokamak operations. An experimental data-driven machine learning (ML) approach is presented that predicts the pedestal heights and widths of electron density (ne) and electron temperature (Te) profiles as well as the separatrix ne from externally controllable parameters such as the plasma shape, heating method and power, and gas puff rate and integrated gas puff. The OMFIT framework was used with DIII-D data to efficiently, robustly, and automatically build a database of pedestal parameters to train machine learning models. Database creation was enabled by the search engine tool for DIII-D data, TokSearch, which parallelizes data fetching, enabling fast searches through basic signals of thousands of DIII-D shots and selection of relevant time intervals. Principal Component Analysis (PCA) separated the database into three clusters that represent classes of plasma shapes that are regularly used in DIII-D. The most important parameters for setting the pedestal structure were plasma current (Ip), toroidal magnetic field (Bφ), neutral beam heating power (PNBI) and shaping quantities. The Deep Jointly Informed Neural Networks (DJINN) algorithm was applied to identify suitable neural network (NN) architectures that appropriately capture the features of the pedestal database. Separate NNs were implemented for each pedestal parameter, and ensembling methods were used to improve the prediction accuracy and allowed estimation of the prediction uncertainty. The pedestal predictions of the test dataset lie within the measurement uncertainties of the pedestal parameters. The NN outperformed simple Linear Regression (LR) analysis, indicating non-linear dependencies in the pedestal structure. The presented achievements illustrate a promising path for future research, using feature extraction to infer experimental trends and thereby improve pedestal models as well as deploying NN for a fast pedestal prediction in DIII-D scenario development.

Research Organization:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; General Atomics, San Diego, CA (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
DOE Contract Number:
SC0014264; FC02-04ER54698; AC02-09CH11466
OSTI ID:
1887964
Country of Publication:
United States
Language:
English

Cited By (1)

Prediction of DIII-D Pedestal Structure From Externally Controllable Parameters journal October 2021

Similar Records

Prediction of DIII-D Pedestal Structure From Externally Controllable Parameters
Journal Article · Wed Oct 06 00:00:00 EDT 2021 · IEEE Transactions on Plasma Science · OSTI ID:1887964

Integrated fusion simulation with self-consistent core-pedestal coupling
Journal Article · Wed Apr 20 00:00:00 EDT 2016 · Physics of Plasmas · OSTI ID:1887964

Integrated modeling applications for tokamak experiments with OMFIT
Journal Article · Wed Jul 01 00:00:00 EDT 2015 · Nuclear Fusion · OSTI ID:1887964