skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of SiPM physics parameters down to cryogenic temperatures and for a bio-medical application

Thesis/Dissertation ·
OSTI ID:1712765

Silicon PhotoMultiplier (SiPM) detector has become a suitable visible light/photon detector for many applications like high energy physics and neutrino experiments, fluorescence detection, bio-photonics and medical imaging. The first part of my thesis was oriented to the studies of SiPM physics parameters as a function of temperature. Particularly, recent KETEK devices (year 2015) with different technological characteristics like p/n and n/p junctions, with and without trench technology, and different widths of epitaxial layer were studied in the temperature range from 308.15 K (+35°C) down to 238.15 K (-35°C). In addition, the Hamamatsu devices from 2011 production run as well as new devices from 2015 year, with improved technological characteristics inducing a reduced noise, were investigated in a wider temperature range from 318.15 K (+45°C) down to 98.15 K (-175°C). For these purposes, I participated to the design, installation, commissioning and calibration of a cryogenic experimental setup dedicated to electrical, optical and temperature studies of SiPM devices. Also, I have developed an automatic analysis procedure able to handle in a short time an impressive quantity of experimental data (i.e. tens of Gb/device) and to give a precise and fast information on main SiPM parameters and their temperature dependence. I have also developed a physical modeldescribing the DC I-V curves of SiPM detectors at different temperatures. The proposed model fits well the shape of IV curve in a very large currents range from 10⁻¹² A up to 10⁻⁵ A over the full working range of various devices. Consequently, the IV model can be used as a simple and fast method for determination of SiPM parameters like breakdown voltage VBD, the shape of Geiger triggering probability PGeiger as a function of Vbias as well as the Vbias working range. The comparison of these parameters with those calculated from AC measurements and analyzed by the automatic procedure showed a good agreement. The second part of my thesis was oriented to the study of SiPM devices and their physical parameters required to build a prototype of betasensitive intracerebral probe. Such probe is dedicated to measure the local concentration of radiolabeled molecules on awake and freely moving animal and to study new animal models of human disorders (neurodegenerative diseases, tumor growth, and neuropsychiatric disorders). It is composed of small size, low-noise SiPM device coupled to a scintillating fiber and readout by a dedicated miniaturized low-power consumption electronics. Three SiPM devices have been chosen as the most adapted for our application: two small KETEK devices of 0.5×0.5 mm² size (with and without optical trenches, specially developed by KETEK to fulfill our requirements) and a standard Hamamatsu device of 1.3×1.3 mm² size, all devices having 50 × 50 μm² μcell size. For each SiPM the gain G, dark count rate DCR and beta sensitivity were measured as a function of Vbias and temperature. The obtained results showed that the small field of view and newly developed structure of the KETEK devices allow a large decrease of the dark count rate DCR. However, this small field of view also leads to a reduced light collection due to the thickness of the epoxy protection resin on top of the SiPM and the acceptance angle of the fiber. Since the beta sensitivity represents a tradeoff between photon detection efficiency PDE and dark count rate DCR, KETEK SiPMs exhibit similar performances in comparison with the Hamamatsu device. Preliminary results demonstrate that the beta sensitivity of KETEK devices can be significantly improved by using focusing lens between the scintillating fiber and the SiPM or by reducing the thickness of its epoxy protection resin.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1712765
Report Number(s):
tel-02345743; 2016SACLS552; FERMILAB-THESIS-2016-47; oai:inspirehep.net:1823505
Country of Publication:
United States
Language:
English

Similar Records

Breakdown voltage and triggering probability of SiPM from IV curves at different temperatures
Conference · Mon May 30 00:00:00 EDT 2016 · Nucl.Instrum.Meth.A · OSTI ID:1712765

The Beam Dump eXperiment
Thesis/Dissertation · Mon Mar 02 00:00:00 EST 2020 · OSTI ID:1712765

Characterization of the Hamamatsu VUV4 MPPCs for nEXO
Journal Article · Tue Jun 18 00:00:00 EDT 2019 · Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment · OSTI ID:1712765

Related Subjects