skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physical Security Model Development of an Electrochemical Facility

Technical Report ·
DOI:https://doi.org/10.2172/1668130· OSTI ID:1668130

Nuclear facilities in the U.S. and around the world face increasing challenges in meeting evolving physical security requirements while keeping costs reasonable. The addition of security features after a facility has been designed and without attention to optimization (the approach of the past) can easily lead to cost overruns. Instead, security should be considered at the beginning of the design process in order to provide robust, yet efficient physical security designs. The purpose of this work is to demonstrate how modeling and simulation can be used to optimize the design of physical protection systems. A suite of tools, including Scribe3D and Blender, were used to model a generic electrochemical reprocessing facility. Physical protection elements such as sensors, portal monitors, barriers, and guard forces were added to the model based on best practices for physical security. Two theft scenarios (an outsider attack and insider diversion) as well as a sabotage scenario were examined in order to optimize the security design. Security metrics are presented. This work fits into a larger Virtual Facility Distributed Test Bed 2020 Milestone in the Material Protection, Accounting, and Control Technologies (MPACT) program through the Department of Energy (DOE). The purpose of the milestone is to demonstrate how a series of experimental and modeling capabilities across the DOE complex provide the capabilities to demonstrate complete Safeguards and Security by Design (SSBD) for nuclear facilities.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE); USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000; NA0003525
OSTI ID:
1668130
Report Number(s):
SAND-2020-10051R; 690786; TRN: US2202435
Country of Publication:
United States
Language:
English