skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Level-set Modeling Simulations of Chemical Vapor Infiltration for Ceramic Matrix Composites Manufacturing

Technical Report ·
DOI:https://doi.org/10.2172/1615819· OSTI ID:1615819

Silicon-carbide (SiC) reinforced ceramic matrix composites (CMCs) are a key enabling technology to reduce fuel consumption and emissions of gas turbine engines. In one manufacturing approach, chemical vapor infiltration (CVI) is limited to only coating SiC fibers. The preform is then fabricated using a lay-up of basic plys or 2-D woven sheets composed of the precoated fibers. At the other extreme, CVI is used to completely densify a 3-D woven preform shaped almost like the gas turbine component itself. The latter approach is more suitable for highly engineered components which sit directly in the gas path of the engine, for example, a high pressure turbine blade. In this case, the geometry is necessarily complex for aerodynamic, stress, and lifing (multi-physics) requirements. Presently, optimizing the CVI-dominated manufacturing approach is largely by trial-and-error. In this work, a first-principles modeling of CVI is performed to realize optimization of SiC/SiC CMC manufacturing. The modeling is based on a level-set framework to describe the interface between the vapor and solid phases. A finite-difference numerical scheme using an immersed boundary method is developed for fixed, structured meshes. Massively parallel direct numerical simulations (DNS) of CVI through fiber-woven geometries are performed using one-step chemistry, and over a range of Thiele moduli. Illustrative applications of the resulting large DNS data sets are given, including the development of fiber-weave specific infiltration models and structure functions for mean-field (porous media) Computational Fluid Dynamics (CFD) simulations of CVI.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1615819
Report Number(s):
ORNL/TM-2019/1206; CRADA/NFE-16-06412
Country of Publication:
United States
Language:
English

Similar Records

Microstructural and infiltration properties of woven preforms during chemical vapor infiltration
Journal Article · Tue Nov 09 00:00:00 EST 2021 · Journal of the American Ceramic Society · OSTI ID:1615819

Mass transport measurements and modeling for chemical vapor infiltration
Conference · Mon Dec 01 00:00:00 EST 1997 · OSTI ID:1615819

Modeling the Effects of Microwave Heating on Densification in Chemical Vapor Infiltration
Technical Report · Sat Apr 01 00:00:00 EDT 2023 · OSTI ID:1615819

Related Subjects