skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimizing composition in MnBi permanent magnet alloys

Journal Article · · Acta Materialia
 [1];  [1];  [1];  [1];  [2];  [1]; ORCiD logo [2]
  1. Ames Lab., Ames, IA (United States). Division of Materials Sciences and Engineering
  2. Ames Lab., Ames, IA (United States). Division of Materials Sciences and Engineering; Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering

MnBi is an attractive rare-earth-free permanent magnetic material due to its low materials cost, high magnetocrystalline anisotropy (1.6 × 106 J m-3), and good magnetization (81 emu g-1) at room temperature. Although the theoretical maximum energy product (BH)max of 20 MGOe is lower than that of NdFeB-based magnets, the low temperature phase (LTP) of MnBi has a positive temperature coefficient of coercivity, up to 200 °C, which makes it a potential candidate for high temperature applications such as permanent magnet motors. However, the oxygen sensitivity of the MnBi compound and the peritectic reaction between Mn and Bi make it difficult to synthesize into a material with high purity. This challenge is partly offset by adding excess Mn to the alloy, with composition close to Mn55Bi45 resulting in the highest saturation magnetization after common processing techniques such as arc melting, casting, melt spinning, and ball milling. In this paper, we report a systematic process which reduces the amount of excessive Mn, while simultaneously providing a large saturation magnetization (MS) of 79 emu g-1 at 300 K in the annealed Mn52Bi48 ribbons. We also report excellent magnetic properties in the ball powders, resulting in 0.5–5 µm particles with MS of 75.5 emu g-1, coercivity Hci of 10.8 kOe, and (BH)max of 13 MGOe using 9 T applied field at 300 K. A secondary annealing treatment on various ball milled powders increased Hci by up to 21%, and also resulted in an increase in MS up to 78.8 emu g-1.

Research Organization:
Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Grant/Contract Number:
EE0007794; AC02-07CH11358
OSTI ID:
1574017
Alternate ID(s):
OSTI ID: 1573438; OSTI ID: 1864011
Report Number(s):
IS-J 10072
Journal Information:
Acta Materialia, Vol. 181, Issue C; ISSN 1359-6454
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Similar Records

New anisotropic MnBi permanent magnets by field-annealing of compacted melt-spun alloys modified with Mg and Sb
Journal Article · Fri Sep 13 00:00:00 EDT 2019 · Journal of Magnetism and Magnetic Materials · OSTI ID:1574017

Thermal stability of MnBi magnetic materials
Journal Article · Mon Jan 27 00:00:00 EST 2014 · Journal of Physics. Condensed Matter · OSTI ID:1574017

High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment
Journal Article · Mon Dec 01 00:00:00 EST 2014 · IEEE Transactions on Magnetics · OSTI ID:1574017