skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable Photoluminescent Core/Shell Cu(+)-Doped ZnSe/ZnS Quantum Dots Codoped with Al(3+), Ga(3+), or In(3+).

Journal Article · · ACS Applied Materials and Interfaces

Semiconductor quantum dots (QDs) with stable, oxidation resistant, and tunable photoluminescence (PL) are highly desired for various applications including solid-state lighting and biological labeling. However, many current systems for visible light emission involve the use of toxic Cd. Here, we report the synthesis and characterization of a series of codoped core/shell ZnSe/ZnS QDs with tunable PL maxima spanning 430-570 nm (average full width at half-maximum of 80 nm) and broad emission extending to 700 nm, through the use of Cu(+) as the primary dopant and trivalent cations (Al(3+), Ga(3+), and In(3+)) as codopants. Furthermore, we developed a unique thiol-based bidentate ligand that significantly improved PL intensity, long-term stability, and resilience to postsynthetic processing. Through comprehensive experimental and computational studies based on steady-state and time-resolved spectroscopy, electron microscopy, and density functional theory (DFT), we show that the tunable PL of this system is the result of energy level modification to donor and/or acceptor recombination pathways. By incorporating these findings with local structure information obtained from extended X-ray absorption fine structure (EXAFS) studies, we generate a complete energetic model accounting for the photophysical processes in these unique QDs. With the understanding of optical, structural, and electronic properties we gain in this study, this successful codoping strategy may be applied to other QD or related systems to tune the optical properties of semiconductors while maintaining low toxicity.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1512192
Journal Information:
ACS Applied Materials and Interfaces, Vol. 7, Issue 18; ISSN 1944-8244
Country of Publication:
United States
Language:
English

Similar Records

Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots
Journal Article · Tue Apr 26 00:00:00 EDT 2022 · Journal of Physical Chemistry. C · OSTI ID:1512192

Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging
Journal Article · Tue Mar 23 00:00:00 EDT 2021 · Nano Letters · OSTI ID:1512192

Surface Induced Magnetism in Quantum Dots
Journal Article · Thu Aug 20 00:00:00 EDT 2009 · GIT Laboratory Journal Europe, vol. 13, no. 9-10, October 1, 2009, pp. 12-13 · OSTI ID:1512192

Related Subjects