skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling of High-altitude Atmospheric Dispersion Using Climate and Meteorological Forecast Data

Technical Report ·
DOI:https://doi.org/10.2172/15015929· OSTI ID:15015929

The overall objective of this study is to provide a demonstration of capability for importing both high altitude meteorological forecast and climatological datasets from NRL into the NARAC modeling system to simulate high altitude atmospheric droplet release and dispersion. The altitude of release for the proposed study is between 60 and 100km altitude. As either standard climatological data (over a period of 40 years) or daily meteorological forecasts can drive the particle dispersion model, we did a limited comparison of simulations with meteorological data and simulations with climatological data. The modeling tools used to address this problem are the National Atmospheric Release Advisory Center (NARAC) modeling system at LLNL which are operationally employed to assist DOE/DHS/DOD emergency response to an atmospheric release of chemical, biological, and radiological contaminants. The interrelation of the various data feeds and codes at NARAC are illustrated in Figure 1. The NARAC scientific models are all verified to both analytic solutions and other codes; the models are validated to field data such as the Prairie Grass study (Barad, 1958). NARAC has multiple real-time meteorological data feeds from the National Weather Service, from the European Center for Medium range Weather Forecasting, from the US Navy, and from the US Air Force. NARAC also keeps a historical archive of meteorological data partially for research purposes. The codes used in this effort were the Atmospheric Data Assimilation and Parameterization Techniques (ADAPT) model (Sugiyama and Chan, 1998) and a development version of the Langrangian Operational Dispersion Integrator (LODI) model (Nasstrom et al., 2000). The use of the NASA GEOS-4 dataset required the use of a development version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model (Hodur, 1997; Chin and Glascoe, 2004). The specific goals of this study are the following: (1) Confirm data compatibility of NRL meteorological and climatological data for NARAC models. Import both high altitude meteorological forecasts and high altitude climatological data provided by NRL into the NARAC system. (2) Run ADAPT and LODI transport/dispersion codes for one scenario on imported meteorological forecast and climatological data. (3) Provide documentation of the effort. The following tasking description gives both the context and manner in which the goals listed above were accomplished: (A) We had discussions with NRL personnel, notably Stefan Thonnard and Doug Drob, to confirm the data compatibility of the data that we will be importing for use. Data up to 100km in altitude was provided and imported into the NARAC modeling system. (B) The ADAPT atmospheric data assimilation model was used to take data from NRL and provide mass-consistent three-dimensional time-varying wind fields for the NARAC Langrangian particle tracking code, LODI. A test version of LODI, developed to consider rarefied conditions, higher altitude turbulence, and high initial particle speeds, was used run on the ADAPT output. (C) The results of the proof-of-concept simulations under time-varying meteorological forecasts and under climatological wind fields are compared and documented in this brief report discussing the capability of the NARAC modeling system for importing and using the high altitude datasets from NRL. A limited assessment of the difference between dispersion results on the different data sets is made.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15015929
Report Number(s):
UCRL-TR-210992; TRN: US200509%%442
Resource Relation:
Other Information: PBD: 30 Mar 2005
Country of Publication:
United States
Language:
English