skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance

Journal Article · · Journal of the Atmospheric Sciences
DOI:https://doi.org/10.1175/JAS3300.1· OSTI ID:15010684

Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM). A Quality Measurement Experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three objectives: (1) to validate and improve the absorption models and spectral line parameters used in line-by-line radiative transfer models, (2) to assess the ability to define the atmospheric state, and (3) to assess the quality of the radiance observations that serve as ground-truth for the model. Analysis of data from 1994-1997 made significant contributions to optimizing the QME, but is limited by small but significant uncertainties and deficiencies in the atmospheric state and radiance observations. This paper concentrates on the analysis of QME data from 1998-2001, wherein the data have been carefully selected to address the uncertainties in the 1994-1997 data set. Analysis of this newer data set suggests that the representation of self-broadened water vapor continuum absorption is 3-8% too strong in the 750-1000 cm-1 region. The dataset also provides information on the accuracy of the self and foreign-broadened continuum absorption in the 1100-1300 cm-1 region. After accounting for these changes, remaining differences in modeled and observed downwelling clear sky fluxes are less than 1.5 W m-2 over a wide range of atmospheric states.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15010684
Report Number(s):
PNNL-SA-41321; JAHSAK; KP1201030; TRN: US0500313
Journal Information:
Journal of the Atmospheric Sciences, Vol. 61, Issue 22; Other Information: PBD: 1 Nov 2004; ISSN 0022-4928
Country of Publication:
United States
Language:
English