skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cis-acting factors modulate stability of intermediate alleles for Huntington disease

Journal Article · · American Journal of Human Genetics
OSTI ID:134212
; ;  [1]
  1. Dept. of Medical Genetics, Vancouver (Canada); and others

The genetic basis of Huntington disease (HD), a late-onset autosomal dominant neurodegenerative disorder, has recently been defined as a CAG trinucleotide expansion in a novel gene on 4p16.3. The CAG length in clinically normal people ranges from 9 to 37, with the vast majority of alleles (99%) containing less than 30 repeats. In contrast, HD patients have CAG lengths greater than 36 with the largest repeat reported to date being 121. Molecular analysis of sporadic cases of HD revealed that new mutations are not rare (3%), and arise from intermediate alleles (IAs). IAs are CAG alleles greater than that usually seen in the general population (>30), but less than that seen in patients with HD and occur with a frequency of approximately 1.5% of the general population (12/797). An important question is whether these IAs are also susceptible to expansion. In new mutation families, these IAs are unstable in passage through the male germline and in sporadic cases expand to the full mutation associated with the HD phenotype. On the 41 meioses analyzed in new mutation families, 61% were unstable. In contrast to IAs in the new mutation families, the IAs in the general population were predominately stable from one generation to the next. Comparison of the frequency of intergenerational stability between the general population and the new mutation families showed that IAs in the general population are considerably more stable than those in the new mutation families. In contrast to SCA 1 where sequence interruption is thought to play a role in CAG trinucleotide stability, sequence analysis of IAs both from the general population and the new mutation families failed to reveal any interruption of the CAG tracts. These findings suggest that while CAG size is an important factor, other cis-acting factors present in new mutation families but not in the general population are likely to be critical in conferring instability upon the CAG trinucleotide repeat.

OSTI ID:
134212
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0948
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English