skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hemizygosity at the IGF1R locus correlates with growth delay in the ring chromosome 15 syndrome

Journal Article · · American Journal of Human Genetics
OSTI ID:133741
;  [1]
  1. Stanford Univ., CA (United States)

The ring 15 syndrome is characterized by intrauterine growth retardation, mental retardation, postnatal growth failure, triangular facies, 5th finger clinodactyly, leg-length discrepancy, cafe-au-lait spots and cryptorchidism. The degree of short stature varies from mild to severe and is associated with normal growth hormone and IGF-1 levels, but a wide range of bone age delay. These children retain de novo rings with breakpoints in the short arm at 15p12-11 and in the long arm at 15q26, the region to which the insulin-like growth factor type 1 receptor (IGFIR) has been mapped. We investigated if the degree of growth failure correlates with disruption loss of the IGF1R gene. Ring breakpoints for all patients were determined by typing of RFLP and microsatellite markers from distal 15q for patients and their parents. The order of the loci studied is cen-IVD-FES-D15S130-E15S107-D15S87-D15S86-D15S3. All breakpoints mapped distal to D15S100. Presence or absence of the IGF1R gene on the ring chromsomes of five patients was ascertained by in situ hybridization and gene dosage blots using probes for the more proximally located genes IVD and c-Fes as controls. Heterozygosity for one patient was also confirmed by typing of a polymorphism in the 3{prime} UTR of IGF1R. Two patients who retained the IGF1R were hemizygous at D15S87 while two lacking the IGF1R retained D15S107 indicating that the IGF1R maps between these two markers. Three of the patients with severe growth failure (more than 4 SDs below the mean) were hemizygous at the IGF1R locus while the patient with borderline short stature had two copies of the IGF1R; she was subsequently found to be growth hormone deficient and has demonstrated a response to therapy. Our finding of severe short stature correlating with loss of one copy of the IGF1R suggests a potential role for heterozygous IGF1R mutations in other cases of unexplained growth failure.

OSTI ID:
133741
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0472
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English