skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

Technical Report ·
DOI:https://doi.org/10.2172/1330857· OSTI ID:1330857

This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts in relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line containing hotoconvertible GFP, we observed transfer of protein from one plastid to another and within a stromule from single plastids. We provided time-lapse movies demonstrating movement of both the photoconvertible GFP and standard GFP between plastids. We previously demonstrated the lack of a plastid network within plant cells. We provided protocols explaining how to use fluorescent protein technology to track plastids and stromules within plant cells. We demonstrated that standard GFP unexpectedly could be photoconverted to a red form under certain conditions, allowing the use of GFP lines for studies that require photoconversion.

Research Organization:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC0002628
OSTI ID:
1330857
Report Number(s):
DOE-Cornell-16070; FG02-09ER16070
Country of Publication:
United States
Language:
English