skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

Journal Article · · Mathematical Geosciences

This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1324913
Report Number(s):
PNNL-SA-103689; KP1702030
Journal Information:
Mathematical Geosciences, Vol. 48, Issue 5; ISSN 1874-8961
Publisher:
Springer
Country of Publication:
United States
Language:
English

Similar Records

Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments
Journal Article · Mon Sep 28 00:00:00 EDT 2015 · Mathematical Geosciences · OSTI ID:1324913

Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments
Journal Article · Tue Feb 12 00:00:00 EST 2013 · Water Resources Research, 49(2):1163-1177 · OSTI ID:1324913

Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions
Journal Article · Sat Feb 15 00:00:00 EST 2014 · Water Resources Research, 50(2):855-870 · OSTI ID:1324913

Related Subjects