skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

Journal Article · · Biophysical Journal
 [1];  [2]
  1. Univ. of Chicago, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)

Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1249182
Journal Information:
Biophysical Journal, Vol. 109, Issue 5; ISSN 0006-3495
Publisher:
Elsevier
Country of Publication:
United States
Language:
English