skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C

Journal Article · · Biogeochemistry

The DyDOC model was used to simulate organic matter decomposition and dissolved organic matter (DOM) transport in deciduous forest soils at the Oak Ridge Reservation (ORR) in Tennessee, USA. The model application relied on extensive data from the Enriched Background Isotope study (EBIS), which made use of a local atmospheric enrichment of radiocarbon to establish a large-scale manipulation experiment with different inputs of 14C from both above-ground and below-ground litter. The aim of the modelling was to test if the processes that constitute DyDOC can explain the available observations for C dynamics in the ORR. More specifically we used the model to investigate the origins of DOM, its dynamics within the soil profile, and how it contributes to the formation of stable carbon in the mineral soil. The model was first configured to account for water transport through the soil, then observed pools and fluxes of carbon and 14C data were used to fit the model parameters that describe the rates of the metabolic transformations. The soils were described by a thin O-horizon, a 15 cm thick A-horizon and a 45-cm thick B-horizon. Within the thin O-horizon, litter is either converted to CO2 or to a second organic matter pool, which is converted to CO2 at a different rate, both pools being able to produce DOM. The best model performance was obtained by assuming that adsorption of downwardly transported DOM in horizons A and B, followed by further conversion to stable forms, produces mineral-associated carbon pools, while root litter is the source of non-mineral associated carbon, with relatively short residence times. In the simulated steady-state, most carbon entering the O-horizon leaves quickly as CO2, but 17% (46 gC m-2 a-1) is lost as DOC in percolating water. The DOM comprises mainly hydrophobic material, 40% being derived from litter and 60% from older organic matter pools (residence time ~ 10 years). Most of the DOM is converted to CO2 in the mineral soil, over timescales of 1 to 15 years, but there is a conversion of 11 gC m-2 a-1 into stabilised forms that turnover on a timescale of 100-200 years. The small flux of DOC leaving the B-horizon (1.2 gC m-2 a-1) is mainly hydrophilic material, some of which can penetrate to depth quickly after formation. Considering the soil profile as single entity, the simulated soil carbon pools at ORR have mean residence times in the range 1-200 years, most of the carbon being in the slow pools, most of the turnover associated with the faster ones.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge National Environmental Research Park
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1035519
Journal Information:
Biogeochemistry, Vol. 108, Issue 1-3; ISSN 0168-2563
Country of Publication:
United States
Language:
English