skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An iterative finite difference method for solving the quantum hydrodynamic equations of motion

Conference ·
 [1]
  1. Los Alamos National Laboratory

The quantum hydrodynamic equations of motion associated with the de Broglie-Bohm description of quantum mechanics describe a time evolving probability density whose 'fluid' elements evolve as a correlated ensemble of particle trajectories. These equations are intuitively appealing due to their similarities with classical fluid dynamics and the appearance of a generalized Newton's equation of motion in which the total force contains both a classical and quantum contribution. However, the direct numerical solution of the quantum hydrodynamic equations (QHE) is fraught with challenges: the probability 'fluid' is highly-compressible, it has zero viscosity, the quantum potential ('pressure') is non-linear, and if that weren't enough the quantum potential can also become singular during the course of the calculations. Collectively these properties are responsible for the notorious numerical instabilities associated with a direct numerical solution of the QHE. The most successful and stable numerical approach that has been used to date is based on the Moving Least Squares (MLS) algorithm. The improved stability of this approach is due to the repeated local least squares fitting which effectively filters or reduces the numerical noise which tends to accumulate with time. However, this method is also subject to instabilities if it is pushed too hard. In addition, the stability of the MLS approach often comes at the expense of reduced resolution or fidelity of the calculation (i.e., the MLS filtering eliminates the higher-frequency components of the solution which may be of interest). Recently, a promising new solution method has been developed which is based on an iterative solution of the QHE using finite differences. This method (referred to as the Iterative Finite Difference Method or IFDM) is straightforward to implement, computationally efficient, stable, and its accuracy and convergence properties are well understood. A brief overview of the IFDM will be presented followed by a couple of benchmark applications on one- and two-dimensional Eckart barrier scattering problems.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1031043
Report Number(s):
LA-UR-10-05960; LA-UR-10-5960; TRN: US201201%%487
Resource Relation:
Journal Volume: 943; Journal Issue: 1-3; Conference: CCP6 Workshop on Quantum Trajectories ; July 12, 2010 ; Bangor, Wales UK
Country of Publication:
United States
Language:
English