skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The influence of bubble plumes on air-seawater gas transfer velocities

Conference ·
OSTI ID:102363
; ;  [1]
  1. Pacific Northwest Lab., Richland, WA (United States); and others

Air-sea gas exchange is an important process in the geochemical cycling of carbon dioxide (CO{sub 2}). The air-sea flux of CO{sub 2} is determined in part by the physical forcing functions, which are parameterized in terms of the air-sea transfer velocity, k{sub L}. Past studies have attempted to correlate k{sub L} with wind speed, U. Because strong winds occur in ocean regions thought to be important sources or sinks of CO{sub 2}, accurate knowledge of k{sub L} at high U is important in estimating the global air-sea flux of CO{sub 2}. Better understanding of the physical processes affecting gas transfer at large U will increase the accuracy in estimating k{sub L} in ocean regions with high CO{sub 2}, fluxes. Increased accuracy in estimating k{sub L} will increase the accuracy in calculating the net global air-sea CO{sub 2} flux and provide more accurate boundary and initial conditions for global ocean carbon cycle models. High wind speeds are associated with the presence of whitecaps, which can increase the gas flux by generating turbulence, disrupting surface films, and creating bubble plumes. Bubble plumes will create additional turbulence, prolong the surface disruption, and transfer gas to or from individual bubbles while they are beneath the surface. These turbulence and bubble processes very effectively promote gas transfer. Because of this, it is postulated that breaking waves, if present, will dominate non-whitecap related gas exchange. Under this assumption, k{sub L} Will increase linearly with increasing fractional area whitecap coverage, W{sub c}. In support of this, researchers found k{sub L} measured in a whitecap simulation tank (WSI) was linearly correlated with bubble plume coverage, B{sub c} (the laboratory analog of W{sub c}). However, it is not definitively known how the presence of breaking waves and bubble plumes affect the dependence of k{sub L} on Schmidt number, Sc, and aqueous-phase solubility, {alpha}.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
102363
Report Number(s):
PNL-SA-25721; CONF-950743-5; ON: DE95016796; TRN: 95:006754
Resource Relation:
Conference: 3. international symposium on air-water gas transfer, Heidelberg (Germany), 24-27 Jul 1995; Other Information: PBD: Jul 1995
Country of Publication:
United States
Language:
English