skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electroless Deposition of Conformed Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage

Journal Article · · ACS Nano
DOI:https://doi.org/10.1021/nn100572a· OSTI ID:1020159

We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO{sub x}) coatings are generated at the interior and exterior surfaces of macroscopically thick ({approx}90 {micro}m) carbon nanofoam paper substrates via redox reaction with aqueous K{sub 2}FeO{sub 4}. The resulting FeO{sub x}-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li{sub 2}SO{sub 4}), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g{sup -1}, 121 F cm{sup -3}, and 0.85 F cm{sup -2}, respectively, even at modest FeO{sub x} loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO{sub x} coating, delivering specific capacitance >300 F g{sup -1} normalized to the content of FeO{sub x} as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li{sub 2}SO{sub 4} electrolyte effectively suppresses the electrochemical dissolution of the FeO{sub x} coating, resulting in <20% capacitance fade over 1000 consecutive cycles.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1020159
Report Number(s):
BNL-96009-2011-JA; TRN: US201116%%139
Journal Information:
ACS Nano, Vol. 4, Issue 8; ISSN 1936-0851
Country of Publication:
United States
Language:
English