skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Early results from an experimental program to determine the behavior of containment piping penetration bellows subjected to severe accident conditions

Technical Report ·
DOI:https://doi.org/10.2172/10183870· OSTI ID:10183870

Containment piping penetration bellows are an integral part of the pressure boundary in steel containments in the United States (US). Their purpose is to minimize loading on the containment shell caused by differential movement between the piping and the containment. This differential movement is typically caused by thermal gradients generated during startup and shutdown of the reactor, but can be caused by earthquake, a loss-of-coolant accident (LOCA), or ``severe`` accidents. In the event of a severe accident, the bellows would be subjected to pressure, temperature, and deflection well beyond the design basis. Most bellows are installed such that they would be subjected to elevated internal pressure, elevated temperature, axial compression, and lateral deflection during a severe accident. A few bellows would be subjected to external pressure and axial elongation, as well as elevated temperature and lateral deflection. The purpose of this experimental program is to examine the potential for leakage of containment bellows during a severe accident. The test series subjects bellows to various levels and combinations of internal pressure, elevated temperature, axial compression or elongation, and lateral deformation. The experiments are being conducted in two parts. For Part 1, all bellows specimens are tested in ``like-new`` condition, without regard for the possible degrading effect of corrosion that has been observed in some containment piping bellows in the US Part I testing, which included 13 bellows tests, has been completed. The second part of the experimental program, in which bellows are subjected to simulated corrosive environments prior to testing, has just just begun. The Part I experiments have shown that bellows in ``like-new`` condition can withstand elevated temperatures and pressures along with large deformations before leaking. In most cases, the like-new bellows were fully compressed without developing any leakage.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
Nuclear Regulatory Commission, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
10183870
Report Number(s):
SAND-93-2686C; CONF-941011-3; ON: DE94019178; BR: GB0103012
Resource Relation:
Conference: 3. international conference on containment design and operation,Toronto (Canada),19-21 Oct 1994; Other Information: PBD: [1994]
Country of Publication:
United States
Language:
English