skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The VELOPT code for estimating performance of a Fabry-Perot velocimeter

Technical Report ·
OSTI ID:10155104

The VELOPT code calculates an estimate of the performance of a Fabry- Perot (FP) velocimeter. The code is a macro-driven, Symphony spreadsheet written for an IBM PC. VELOPT is designed to be used in conjunction with the POWER codes, which estimate the amount of light entering a collection fiber and the ratio of collected light to light leaving the laser fiber. In this model a velocimeter system, single- frequency laser output illuminates a moving test surface through a lens. Reflected light from the test surface is concentrated by a lens into an optical collection fiber. The collected light is presented to a mode scrambler, a cylinder lens, a filter, and then to a striped Fabry-Perot interferometer (FPI). Light leaving the FPI is imaged via spherical lenses and one mirror onto the slit of an electronic streak camera. The image is intensified within the camera, and then is recorded on film. VELOPT takes 47 user inputs that describe the FP velocimeter system. The primary outputs from the code include the following estimates for each of the first four fringes: Energy per unit area reaching the film; optical density expected on both Polaroid 667 and TMAX3200 films; velocity and time resolution; and statistical smoothness of the streak records. Twenty-six other secondary output quantities for each fringe are also calculated. The finesse limitation due to the finite size of the mirrors is calculated in detail by the routine WALKOFF, which is internal to VELOPT. An estimate of the reduction in effective fill time of the FPI due to the finite spatial resolution of the streak camera is also calculated by VELPOPT.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
10155104
Report Number(s):
UCRL-LR-109886; ON: DE92015566
Resource Relation:
Other Information: PBD: 9 Apr 1992
Country of Publication:
United States
Language:
English