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Since all available experimental evidence agrees quantitatively with

these analogies, it is reasonable to guess that they may be correct and

exact [1]. This is unproven, and it.may be wrong, but it has nontrivial and

experimentally verifiable ramifications.

The first of these is that the transition between the Quantum Hall

states O + 1/3 should be the “same” as that between the states O + 1.

There is now considerable evidence that in the absence of coulomb

interactions, this transition is described by the renormalization group

flows shown in Fig. 1 [8,9]. Several comments are in order. One interprets

this diagram physically the same way one interprets the one-dimensional

flows of the ordinary scaling theory of localization. When the sample Is

small, localization does not occur, and the conductivities take on their
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where P is the Fermi surface density of states, c is the Fermi energy, n

is the electron density, and T is a suitable elastic collsion time. It is

helpful to think of the mean field values in the low-disorder limit, when
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represents the electron density and axx represents the amount of
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disorder. As the sample is imagined to be made bigger, the conductivities

evolve along the flow lines, and converge to the quantum Hall values for

very large samples. The fixed point in the diagram corresponds physically

to the phase transition in which the Hall conductance jumps discontinuously
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extended states. The R-function for this flow has actually been calculated
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