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definite dimensions. Let us denote these operators by 

o (n)a 
Ul...Un 

(x,r), where r(= 21) denotes the chirality of the 

operator. They are given by 
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5.17 
- trace terms. 

We define rotnja to be an 1PI Green's function with the insertion 

of the operator O~~]a.un(x). This amplitude will satisfy a 

renormalization group equation. In particular if Ocnja is 

inserted into the fermion two-point function we obtain: 
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where yF is the anomalous dimension of the fermion field. Since 

6 is of order g3 we may calculate the combination yna - 2yF to order 

g2 by evaluating the logarithmically divergent contributions to 

r (2) to order g2. These are given by the Feynman graphs of 
o(n) 

Figure 8 and yield: 
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(in the three triplet model C2(R) = $1. As expected the anomalous 

dimensions are independent of a and r. Having performed this 

calculation we can now compute the scaling behavior of the 

nonsinglet pieces of the deep-inelastic structure functions 

according to Equation 5.15. If we denote by N(x,q2) one of 

these structure functions, say 




