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singularity at n=-1. Concerning the former in particular, there is the . *
danger that higher order terms in perturbation theory lead to corrections

which increase with n. In the present context we must ask whether we

(n)
L

firmer ground, for the following feasons:

can trust perturbation theory for C /Cz(n). Here we believe that we 2re on

(a) In each order of perturbation theory the leading contribution to

an) as n —3&@ 1is given by vertex correction graphs, as displayed

(n)

in Fig. 6a. These give no contributions to CL . However, the graphs

of Fig. 6b, down by exactly one power of n as n — & , do contribute

(n)
L

behavior in Eq. (32) may therefore be realistic even beyond lowest

to C . There is no obvious non uniformity, therefore, and the r -+ «
order in perturbation theory.

(b) Graphs involving exchangé of two gluons do not contribute to the
rafio Cén)/C§n). Order by order in perturbation theory, therefore, it
seems that there are no singularities to/the right of n=—2.v Even if
the sum over all orders produces a moving singularity (as~q2 varies),

since the effective coupling constant at large q2 is small, such a

singularity should not move much to the right of n=-2. This is
relevant because Regge arguments suggest thaEngn) has a singularity
at n=-3/2 (for the non singlet case under discussion). Thercfore,

the i %-> O behavior of FL(x,qz,), obtaiped from the inversion of
: | ’ | |
. ﬂy _ (ﬁ)
fare Rongd = [aremBang) C/CY | o
o ‘

will be dominated by the singularity of Eén). This means that the behavior
predicted by Eq. (34) is not sensitive to the singularity structure of

C{n)/C§n) and should therefore be reliable.





