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successive terms may be repraced by x1 itself. This is valid if the ks change very little between 

successive collisions. In this msnner, the coefficient of A1 is approximated by: 
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Consistent with our approximation, the finite series has been considered to be infinite. It can be 
readily shown that the error becomes negligible for A >>l (and absorption processes are very few 

compared to scattering). Substitution of this approximation into (6-U) yields 
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where C = 2&A) as before. The sum may be written as an integral if the change of energy is small 
for each collision: 

Number of collisions between E + AE and E = 
log (E + AE) - log E 
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The integration variable is primed to distinguish it from the limits. 

In (6-14) 6;s the average decrease in the natural logarithm of the energy per coIIision, defir&in Jo 

equation (6-7). The dependence of the mean free path on the energy has been noted by writi& 
A’@). E. is the initjaI neutron energy at the source, and E is the energy of the neutroa at thC Y 

particular position f. Equation (6-14) the average displacement-squared for neutrons of energjt E 

when the scattering is done by heavy nuclei. 

It is often convenient to use logarithmic variables, in which case the average of the displace- 

ment-squared is: 
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As was mentioned previously, the formula for (19, can be derived exactly. The result 
kicerca Sci. 7:13(1936)1 is: 
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where x =log, (Eo/E’); a = logJEo/E) 


