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successive terms may be replaced by Kl itself. This is valid if the A’s change very little between
successive collisions. In this manner, the coefficient of A L is approximated by:
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Consistent with our approximation, the finite series has been considered to be infinite. It can be
teadily shown that the error becomes negligible for A >>1 (and absotption processes are very few
compared to scattering). Substitution of this approximation into (6-13) yields
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where C = 2/(3A) as before. The sum may be written as an integral if the change of energy is small
for each collision:

Number of collisions between E + AE and E =
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The integration variable is primed to distinguish it from the limits.

In (6-14) £ is the average decrease in the natural logarithm of the energy per collision, defined in
equation (6-7). The dependence of the mean free path on the energy has been noted by writifi§
AXE). E , is the initial neutron energy at the source, and E is the energy of the neutron at thé .
particular position r. Equation (6-14) the average displacement-squared for neutrons of energy E
when the scattering is done by heavy nuclei. : '

It is often convenient to use logarithmic variables, in which case the average of the displace-
ment-squared is: '
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As was mentioned previously, the formula for (r’)" can be derived exactly. The result
[Ricerca Sci. 7:13(1936)] is: ‘
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where x = log (EO/E' ), a= loge(Eo/E)
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