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E- u>o u = A pin [dm(E-U)/li“ rl + B cos [&m(E-U)fi’ r3 

E- U=O U= A’t t B’ (5-N 

E - UC0 u =Akp[- &U-E)fi* t] + B%xp[&~@ r] 

Boundary conditions determine the values of A, B, A ’ , B ‘, etc. These conditions arc that u/r 
(=+) is finite everywhere and vanishes at infinity. Ia addition, the first derivative murt be continuous. 

With these conditions and the solutions of (5-8) in mix&Figure 20 can be constructed. In all 
instances, u must be zero at r = 0, since u/r = $must remain finite. The variation of u with r is 
fairly straightforward for the cases E>O and E = 0. The situation when EC0 needs explanation. Near 
the origin, the usual oscillation is observed with increasing period as the function E - U decreases. 
At r = r0 (ace Figure 20), the oscillation stops, and at greater values of r, the exponential solution, 
Iast equation, (5-S), must reduce to a single negcrtSv& exponential, since the positive exponential 
would not satisfy the condition that u/r is finite at r = 0~. That this reduction to a single negative 
exponential is not possible for aB values of E is shown in Figure 20 (E<O) where for E = E,, the 
coefficient of the positive exponential is negative and for E = Es, the coefficient is positive. 
Between E, and Es, there must be some value of E for which the coefficient vanishes. Then may 
bc a number of vahcs of E for which u/r is finite at r = a. These are the allowed values of E for 
E<(J co~spon&ng to the discrete spectrum or the bound states of the system. 

The case E>O corresponds to the case of an incident particle (positive kinetic energy). As 
shown in Figure 20, the wave function outside the nuclear radius is a sine function A sin (/w 
r+s) where g is a phase shift depcndcnt on the wave function within the nucleus to which the sine 

must be joined (at r = R). The sine function does not, when extrapolated, seem to come from the 
origin (dotted line figure) but appears to have its origin at a distance *‘a*’ from r = 0. This distance 
is related to S by the equation s/h= S/271 with X= 2&/ m (the de Broglic wavelength of the 
incident particle). 

Now it can bc proved* that the scattering cross section is directly dependent on this phase 
shift 6 in such a way that when 6 is small (or an integral multiple of n), the scattering cross section 
is small, and when 6 is n/2 (or an integral multiple of 77/z), ihc cross section is a maximum. The 
relation between S and aS is: 

O* = (4&s/msvP) sin* 6 (6 scattering only) (5-9) 

The limitation to s scattering means th8t the incident particle has zero angular momentum. On a 

cIassical basis, a particle with velocity Y at large distances from the nucleus moving in such a 
direction that it would pass the nucleus (if unaffected by nuclear forccs$at a distance b, Figure 21, 

has an angular momentum mvb. According to quantum mechanical principles, this must be quantized, 
or mvb = I& (1 = 0, 1, 2...). Thus b = Iti/mv, or b = U(7i= de Broglic wavelength x 277). The region 
between 1 = 0 and 1 = 1 or b = 0 to be = x is the region of s scattering. Between b = hand 2xis 

the p scattering region. Now if the nuclear size is less than &that is, R<i=2q/mv, then it is 
obvious that no p scattering is possible. Particles passing at ‘*p distances” from the nucleus will 
not be aware of the nuclcugduc to the short range character of nuclear forces. Recalling the dis- 
cussion in section 2.2, it is apparent then that there is s scattering only if the neutrons ave 
slow. 

For very low velocities, the formula (5-9) can be simplified. This is due to the fact that the 

wave function inside the nucleus wilI change very lit& with changes in E when E is small. For 

this reason, **a” does not vary. However, Aincreases as E*, with the net result that a/&becomes 
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