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2.4 THE GENERAL FEATURES OF COLLISIONS * 

In any collision process the “initial state” consists of a particle incident on a target nucleus 
and the “final state” consists of an ejected particle and the recoil nucleus. For a given energy 
of the initial state there are a number of possible energies of the ejected particle as well as a 
number of possible energies of the recoil nucleus, provided these energies are consistent with 
energy conservation. 

If the magnitude of the momentum of the ejected particle and its direction of motion are fixed, 
then momentum conservation fixes the momentum of the recoil and thereby the recoil’s kinetic 
energy. The conservation of energy law then fixes the state of excitation of the recoil nucleus. 
Thus specifying the momentum (magnitude and directiou) of the ejected particle specifies the final 

state completely. 

Suppose the ejected particle has an energy E. Then what is the probability that a transition 

between initial and final states will occur? Assuming such transitions obey the general laws of 
quantum mechanics, it can be shown that the probability that a trausition will occur in which the 
energy of the ejected particle is between E and E + dE can be written as a product Mp where 
M = /E-I lVa”and p(E) is the density of possible final states iu the neighborhood of E. H is a 
matrix element which will be discussed qualitatively herewith and in a later chapter,* is Planck’s 
constant divided by 2% 

The density functioo can be derived from statistical mechanics considerations. In a number 
of instances the variation of this factor will be found to be more effective than tbe variation of M. 
Using a familiar technique in quantum mechanics, the ejected particle is imagined to be in large 
box of volume a. This volume will be infinite in any practical case. The number of states of the 
ejected particle which will have an energy E in this box is proportional to the volume in phase 
space corresponding to this energy. With Cartesian coordinates where h is the linear dimension of 
a cell in phase space (a cell can contain one state), then the number of states for which x is be- 

tween I and x + dx, y between y and y + dy, etc. and p, is between p, and p, + dp,, p, between 

P and P + dp,, etc. is just dx dy dz dp, dp 
&y,z,) &luces this to Q dp 

dp /ha. Integrating over configuration space 
dp dp /ha or (bh&) times the momentum volume element. It is 

apparent then that the numbed of itat& for which the to&a 1 momentum p = /p p t p a + p s is 
between p and p t dp is just R/h’ times the volume element between p and pEt dp. !This v&me 
element, a spherical shell in momentum space, is 4np’dp. Thus 

Number of states with momentum between p and p t dp 

= dN = (Q/hs) 477p2dp 
(29) 

The density of states per unit energy range, AE), cau now be calculated from (2-9) by changing 
from momentum to energy variables. For particles (4 p, n, etc.) E = mv2/2 = ps/2m so that dE = 

P dp/m t v dp. For photons E = hv = hc/Xor since X = h/p this means E = pc or dE = c dp. 
(In both cases dE/dp is the particle or photou velocity.) Substituting these into (29): 

Number of states per unit energy interval with energy 
between E and E t dE 

dN 47-a p2 
P(E) =dE = hr'r 

(2-10) 

where p&/v = msv for particles 

= h”v2/c a for photons 

*In all of the discusston it Is assumed that the ejected particle is in its *&round state,- i.e., 
110 t exe1 ted. 


